
This is a free sample excerpt from the book:

Designing Usable Apps
An agile approach to User Experience design

Author: Kevin Matz
264 pages (softcover edition)

Print edition ISBN: 978-0-9869109-0-6
E-book edition ISBN: 978-0-9869109-1-3

www.designingusableapps.com

Available in print and e-book formats at Amazon.com and other booksellers

WinchelseaPressWinchelseaPress

http://www.designingusableapps.com
http://www.amazon.com/gp/product/0986910902/ref=as_li_tf_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=0986910902&linkCode=as2&tag=wincsystltd03-20


ii



81

To design a software application that is easy to learn and use, it is helpful to understand 
the basic psychology of human-computer interaction. In this chapter, we’ll explore some 
of the key concepts and learn the practical implications for design.

How users get things done with a software 
application
Users interact with software by performing physical actions with input devices such 
as keyboards, mice, touchscreens, and microphones. Graphical user interfaces present 
controls like buttons, sliders, and drop-down boxes, and the user performs actions on 
these controls, either directly by gesturing on a touchscreen, or indirectly via mouse 
clicks or keyboard keystrokes.

Non-graphical interfaces typically rely on the user issuing commands to perform ac-
tions, whether by typing them in at a command line, or via spoken commands in a 
voice-activated system.

But how do users know which actions to perform to get their work done?

The fundamentals of human-
computer interaction

9



82

The usual model for thinking about this involves a hierarchical breakdown of work into 
goals, tasks, and actions:

•	 A user usually has a high-level goal in mind of what he or she wishes to accom-
plish with the application. This might be something like writing a letter, retouching 
a photograph, conducting a video chat with a coworker, paying a credit card bill, 
or comparing prices for flights. Goals are statements about what the user wants to 
achieve, rather than how it will be achieved.

•	 To accomplish a goal, the user usually has to perform some number of general steps 
or structured activities that we could call tasks.

•	 To perform a task, the user will perform actions in the interface. Actions are specific 
operations involving the user interface, such as pressing or clicking on a button, 
entering text, selecting an item from a menu, dragging-and-dropping an icon, and 
so on.

Let’s imagine that a user of a word processor has the goal of writing and printing out a 
letter. This goal might be achieved with some combination of the following general tasks:

•	 Creating a new document

•	 Entering text

•	 Editing and proofreading text

•	 Spell-checking

•	 Adjusting page formatting

•	 Previewing

•	 Printing

To accomplish the task of creating a new document, the user might perform the follow-
ing series of actions in the interface:

•	 Click on the “File” pull-down menu

•	 Click on the “New” menu option

•	 Enter a document title in a dialog box

•	 Click on the “OK” button to close the dialog box

It’s important to understand that goals can often be achieved by means of various 



83

different sets of tasks, and tasks can often be achieved by means of various different 
sets of actions. So for the task of creating a new document, alternatively, the user might 
have used a shortcut keystroke such as Alt-N, or perhaps the user might have opened an 
existing document and re-saved it with a different filename.

And while there may be some cases where tasks can be achieved by following a strict 
step-by-step sequence of actions, in many cases, such as entering and editing text in a 
word processor, tasks are more of an ongoing or iterative process, and multiple tasks 
might become intermixed with each other as work is done towards reaching the goal.

The action cycle
An experienced user will usually know what tasks are needed to accomplish a goal, and 
can figure out what actions are needed to accomplish each task. New users learning how 
to use an application, on the other hand, are usually uncertain about what actions can 
be done to accomplish a task, and may even be uncertain about what tasks are necessary 
to achieve their goal.

Some users will seek out documentation or online help resources to find instructions 
on how to use the product. However, most users will begin by taking an exploratory 
approach.

When first trying to accomplish a task, a user will typically explore and inspect the 
interface for clues. Once the user has identified a potential action that may help move 
the user along the path to accomplishing the task and achieving the goal, the user will 
execute that action, and then observe what happens. If the results of the action — the 
feedback — matched what was expected, then the user will continue on with the next 
step in completing the task. If not, then the user may try an alternative action, or the 
decision might be made to modify the task or the goal.

A user will generally continue this cycle of searching for suitable actions, choosing ac-
tions, performing actions, and evaluating the results, until the goal has been satisfacto-
rily achieved, or until the user gets stuck and needs assistance to continue.

Donald Norman elaborated on this process more formally in his book The Design of 
Everyday Things (Norman, 1990), describing it as the seven-stage action cycle model, 
which consists of the following steps:

1.	 Identifying an immediate goal

2.	 Forming an intention to act



84

3.	 Determining a plan of specific actions

4.	 Carrying out the actions

5.	 Observing the results by perceiving the state of the system and the world

6.	 Interpreting the results

7.	 Evaluating whether the actions had the desired results

These steps are repeated in an ongoing cycle — the evaluation of the effects of the actions 
informs the selection of the next goal — and so this model describes human-computer 
interaction as an continuous feedback loop between the user and the machine.

Mental models
As your users learn how to perform tasks with your application, they gradually form a 
mental model of how it works and how to operate it. A mental model is a conceptual 
representation in a user’s mind of how a system works, and how to operate its interface. 
A user’s mental model reflects the user’s current understanding, and that understanding 
is subject to change as the user gains experience with the product, or forgets details over 
time.

When faced with a new situation, users rely on their mental models to reason about 
the situation and the system, and to make decisions and formulate strategies on how to 
proceed. Users will also form expectations for the application’s behavior based on their 
mental models.

But mental models are not always correct representations of how a system works and 
behaves, and the mismatch between a user’s incorrect mental model and the system’s ac-
tual implementation model can explain many usability problems. It’s important, there-
fore, for a system to be designed in such a way as to help users form a correct mental 
model of the system’s operation.

What makes up a mental model?
Mental models are cognitive structures in peoples’ minds. It’s hard to say that mental 
models have any particular form or structure. A mental model is not inherently visual, 
although visual images do form an important part of a mental model.

A mental model for a software-based system consists of the following elements.



85

General appearance

A user will mentally form visual images of the “places” (screens, pages, tabs, windows, 
etc.) of the system that the user has encountered and is familiar with. But these mental 
images are typically very vague and imperfect; most users will not have photographic 
recall.

For a typical complex software application, users will become familiar with the general 
layout of the places they encounter frequently. The level of detail of mental images will 
vary depending on each user and the frequency of use.

For example, as a frequent user of Microsoft Word, I have a vague image of the layout 
of the main window in my mind, though without looking, I wouldn’t be able to recall 
the exact sequence of icons in the toolbar or even what precise sequence of pull-down 
menus exists after File and Edit. I know some of the dialogs like Font and Find/Replace 
well enough that, even if the text of the labels and buttons were blurred, I could still 
recognize the dialogs by the “shapes” of their layouts. But my recall is not good enough 
to be able to sketch them out accurately.

Concepts, vocabulary, and rules

As we saw in previous chapters, every software-based system or product solves some 
sort of problem (though it may be a trivial problem, such as keeping the user enter-
tained, in the case of a game).

The concepts, vocabulary, and rules involved in the context of that problem are referred 
to as the problem domain, the business domain, or the application domain. 

For some systems, the problem domain is relatively small. The operator of an e-mail 
client only needs to understand a handful of concepts, like e-mail addresses and attach-
ments. Other systems will demand much more in-depth knowledge and understanding 
of a domain. Imagine what a master operator in the control room of a nuclear power 
plant needs to know!

Some applications, like the nuclear power control system, must be designed with the as-
sumption that the users already have the prerequisite knowledge of the domain, whether 
through education, training, experience, or some combination of these.

Other applications have the responsibility of communicating their unique concepts to 
the user. Games, being imaginary worlds rather than real-world problem-solving tools, 
are an extreme example of this. The first time you play, say, Angry Birds, you need to 



86

learn what objects are in the game and how they interact (in other words, the basic rules 
of the game).

Or, take Twitter as another example. To use Twitter, you need to understand what a 
“tweet” is, and you need to learn that you can follow other users and that other users can 
follow you. If you had never heard of and never used Twitter before, you’d most likely 
explore the Twitter website or app and figure out how it works via experimental self-
discovery. In the somewhat unique case of something as popular as Twitter, the chances 
are that you might learn the concepts second-hand by watching a friend use it or by 
hearing about it in the media.

In many cases, users can grasp concepts without explicitly knowing the associated vo-
cabulary and terminology. For example, web browser users can enter website address-
es without knowing that the addresses are technically called URLs (uniform resource 
locators).

Additionally, users often don’t need a full understanding of many concepts if the soft-
ware handles the appropriate details for them. Users of a shipping postage calculator 
may only need of know of a customs duty fee; they do not need to know its precise rules 
and regulations, as they will trust the software to calculate the fee for them.

In many cases, users who aren’t aware of all of the application’s concepts, or don’t un-
derstand them completely, are still often able to use the application effectively, if not 
optimally. Virtually all beginning users of Microsoft Word are unaware of the concept of 
styles, for instance, but they are still quite capable of producing documents.

Upcoming chapters on design principles will give us insights on how to structure ap-
plications to help users discover and learn key concepts.

Navigation map

Many applications consist of places (screens, pages, tabs, windows, etc.), which the user 
can “visit”. When it is necessary for the user to differentiate between these places and to 
be able to get to them quickly, the user will gradually form a mental navigation map 
indicating how to get to the different destinations.

Navigation is often one of the actions needed to carry out a task in an application. For 
example, to purchase goods on an e-commerce site, you may need to navigate to the 
shopping cart page and then click on a Checkout button, which leads to a sequence of 
pages for finalizing the purchase.



87

Sometimes there may be more than one way to get to a location. For example, to get to 
the Print dialog box in most Windows applications, you can navigate to the File menu 
and choose Print…, or you can use the shortcut Ctrl-P, or you can click on the printer 
icon in the toolbar. The user may not be aware of all ways to navigate to a destination, 
and users aware of multiple options will tend to use only one of them frequently.

Action plans or strategies for accomplishing tasks or for reacting to 
situations or problems

Users may memorize plans of actions needed for carrying out certain tasks.

An action plan might take the form of a simple sequence of steps to follow. Or, with suf-
ficient experience with the product, users may internalize a conceptual structure similar 
to a flowchart diagram that has various decision points and branches with steps to follow 
under different circumstances. (But note that most users will not actually have a literal 
visual depiction of a flowchart in their mind, and keep in mind again that the structure 
may not necessarily be complete or correct.)

Sometimes a user may not necessarily understand why a certain sequence of actions 
performs a particular task, but they’ve still memorized the sequence and are able to 
reproduce it. This can happen when the user has been taught how to perform a task in a 
training session, but some of the fundamental concepts (the “why” behind the actions) 
haven’t been explained. It can also happen when the user has discovered by accident how 
to perform a task.

General heuristics and conventions

The user’s mental model may include general heuristics — rule-of-thumb guidelines 
learned from experience — and conventions from a broader context that can be applied 
to the system at hand. For example, based on the user’s experience with the operating 
system, one such heuristic might be, “to dismiss a dialog box, click on the OK button or 
click on the ‘X’ in the title bar”.

Perceived implementation model

In some cases, a user may begin forming a general conception of how the product works 
internally, at some basic level, though this is never guaranteed.

For simple mechanical devices and machines, you are often able to see all of the mov-
ing parts, and you can mentally envision how the parts interact when the device is in 



88

operation. If you examine and manipulate a manual can opener, for instance, you can 
see how the edge of the can is pinched between the wheel and the blade, and you can 
imagine how turning the handle slices open the can.

For simple mechanical devices, seeing and understanding how the parts work can be 
helpful and may even be necessary for operating the device correctly. But for more com-
plex mechanical devices, like the engine of an automobile, the inner workings are often 
too complicated for non-engineers to understand — and so such machinery is tucked 
out of sight. Automobile operators are offered simplified, abstract controls — like the gas 
pedal and the automatic gearshift — which eliminate the need to know how the engine 
works. In other words, the user’s mental model of the underlying implementation can 
be extraordinarily simple (basically: “the engine consumes gas to run, so I need to make 
sure there’s still enough gas in the tank”). The user’s mental model can instead focus on 
the actions needed to make the car move: put the gearshift into Drive and depress the 
gas pedal.

For software products, designers need to hide the internal workings to the maximum 
extent possible. While some technically-sophisticated power users might try be able to 
reverse-engineer how the underlying algorithms and data storage schemes and com-
munications protocols work, users should never have to know about such technical 
implementation details.

But even if users are perfectly shielded from unnecessary technical implementation de-
tails, they will still often be able to observe patterns in how the system operates and 
responds to inputs. From these observations and patterns, users will form simple imple-
mentation models, and implementation models on this level of abstraction are a good 
thing.

Let’s say your application has an on-screen table containing a list of contacts, and there is 
an Add button to let the user add a contact to the list. The user observes that every time a 
new contact is added, it appears at the bottom of the list, below the other entries. Based 
on this observation, the user will tend to presume that the contacts are maintained in a 
sequential list, and new contacts are always simply added to the end of the list (rather 
than being added at the top of the list or being inserted at appropriate places in order to 
maintain alphabetical ordering or some other sort order).

This is a very simple and abstract form of implementation model, but it helps the user 
predict what will happen when the action of adding a new contact is performed, and 
when users encounter another similar-looking table, they will typically assume that the 
same behavior applies there as well.



89

Communicating an intended mental model 
to users
As a user interface designer, you’ll have your own conceptual mental model in your 
mind of how the application will function. In order for users to be able to operate the 
application effectively, they will eventually have to have similar mental models in their 
minds.

One way of building up a mental model in a user’s head is to provide a structured in-
structional curriculum that explains the product’s concepts and operation. This may 
take the form of documentation or training. For most products, however, the vast ma-
jority of users will not read the documentation, and training, when available, is not 
always pedagogically effective.

Some users have the benefit of being able to watch other users use the application, and 
this can be a very effective way of learning the basic concepts and developing an under-
standing of how to perform tasks. Having an expert nearby whom the user can ask for 
assistance is also very helpful.

But without any training, documentation, or opportunities to watch and ask other users, 
the only way a user can figure out how to use the application is to simply start using it, 
and learn via trial-and-error.

The visual presentation of the application’s user interface provides cues as to how to 
accomplish actions and tasks, and the behavior of the application provides feedback on 
whether the actions and tasks are having the intended effect. And so by continually ex-
ploring and experimenting with the application, the user will gradually build up a men-
tal model of the application’s functionality. With time and experience, it is hoped that 
the user’s mental model will increasingly approximate the designer’s conceptual model.

To use the terminology popularized by Donald Norman in The Design of Everyday 
Things, the conceptual model in the designer’s mind is called the design model. The 
user’s mental model is simply referred to as the user’s model. And the visual presen-
tation and the behavior that the product’s user interface exhibits is what is called the 
system image.

And so to design a usable and learnable product, then, the designer’s challenge can be 
viewed as aligning the design model and the system image in such a way that the system 
image accurately portrays the design model and enables users to develop their own us-
ers’ models that approximate the design model as closely as possible.



90

As the completeness and correctness of a user’s mental model increases, that user’s skill 
at operating the application should very gradually approach that of the application’s 
designer.

Structuring the system image to make an application learnable and understandable 
is tricky, and the remainder of this book concentrates on exploring how to do this by 
means of understanding psychological principles, design principles, design techniques, 
and usability testing and evaluation techniques.

Human memory
Learning to use a product involves learning and memorization, and operating a product 
often relies on the user keeping the context of the situation in short-term memory.

Human memory is complex and a little mysterious, and unlike electronic data storage, 
it is not perfectly reliable and predictable. In this section, we’ll take a whirlwind tour of 
human memory, and then apply this knowledge to user interface design.

A model of memory
There are a number of psychological models of human memory. Most distinguish be-
tween short-term and long-term memory as separate but interrelated structures or sys-
tems in the brain. While there is no consensus on the “correct” model, one model useful 
for us is as follows:

•	 Short-term memory or working memory is a temporary store that can hold a small 
amount of information, such as a handful of words, numbers, or symbols, related to 
your current train of thought. Working memory decays very rapidly; the informa-
tion can be lost when your attention is drawn to something else, and so you often 
have to rehearse or repeat the information to yourself to avoid having it disappear. 
The capacity of working memory is said to be about “seven, plus or minus two” 
items (Miller, 1956), and it’s for this reason that North American phone numbers 
were chosen to be seven digits long — it’s difficult to hold more than about seven 
digits in your mind when you hear a phone number and you’re trying to write it 
down.

•	 Middle-term memory or contextual memory holds the information you need to 
be able to work on your current activity, but you won’t permanently remember most 
of this information. For example, during a conversation, you’ll have in mind the 
details of what has been discussed so far. Or if you’re working on your tax return, 



91

you’ll know where on your desk you’ve put your different papers and receipts and 
you’ll remember some of the key numbers and details.

•	 Long-term memory is a more persistent store of knowledge and memories of ex-
periences — facts, concepts, ideas, names, images, sounds, voices, places, emotional 
feeling states, and so on. Long-term memory also stores procedures and skills, for 
both cognitive and sensory-motor tasks. Long-term memory might alternatively be 
called permanent memory, but this is misleading as information is often subject to 
forgetting or “false recall”.

How does memorization happen?
Memorization, the act of intentionally committing something from short-term memo-
ry to long-term memory, usually happens through repetition. Generally, the more often 
you encounter (see or hear) something, the more likely you are to remember it later. 
Studying involves actively and intentionally re-reading, rehearsing, and practicing.

But we also tend to remember information and experiences that are surprising, novel, 
important, or unusual without any repetition.

The exact nature of how the brain forms memories remains unknown, but it is likely that 
information and memories stored in long-term memory are somehow stored symboli-
cally. That is, if you hear a professor telling you information in a lecture, you may memo-
rize some of the information in the lecture, but you will probably not store a perfect 
audio recording of the professor’s lecture. You may of course remember the professor’s 
voice, especially if it is particularly unique, but this is separate from the information 
content of the lecture, which you can make use of in practical contexts without “playing 
back” the “audio recording” of the professor’s voice.

There are some rare people who do have a perfect photographic memory, though, and 
most people can remember music precisely enough that they can distinguish if a later 
performance differs by only one note.

We tend to store information in logical groupings which psychologists call chunks. 
Memorization is most effective when a chunk is associated with other existing chunks of 
information in memory. Associations are logical connections or relationships between 
pieces of information. If you meet and get to know a new person, for instance, you’ll 
associate the image of their face with their name and their other personal details you 
might learn, like their occupation and family members.

If you are trying to learn a complex concept or process, and you feel that your 



92

understanding is incomplete or insufficient because of unanswered questions, memo-
rization and later recall will tend not to be as reliable as when you feel that you have a 
complete and logical understanding of the matter.

Recall and recognition
Recall of information from long-term memory is usually triggered by some cue or 
prompt. Seeing someone’s face, for instance, can trigger you to recall that person’s name.

Successful recall is never guaranteed. The more recently the information was memorized 
or accessed, though, the more likely you are to be able to recall it (the recency effect).

Successful recall of some piece of information is also more likely to occur when you’ve 
already recalled related information. It’s as if related information is stored in adjacent 
locations in the brain, and by accessing information in a particular region, you “light 
up” that region, and then recalling other related information from that region becomes 
easier.

Sometimes you will struggle to recall something, and the information may or may not 
come to you at a later time. Sometimes recall is inaccurate; you recall incorrect informa-
tion. You might misremember a formula when you’re taking a math test, for instance. 
Sometimes you may have doubt about whether the recalled information is correct, but 
just as frequently, you may not recognize the error.

Often you may not be able to recall something, but you can recognize it when you see it. 
The information was in your memory, but for some reason it was “shrouded” and didn’t 
lend itself to being accessed at that moment.

Forgetting
The less frequently a chunk of information or a skill is accessed from long-term memory, 
the more likely it is to be forgotten. This is natural — things that are relevant to your 
daily routines will be remembered, and additionally, they will be continually reinforced 
due to the recency effect. On the other hand, facts that you studied years ago but haven’t 
needed, or the names of people whom you met years ago but haven’t kept in contact with 
since, will tend to fade away.

But there are also many cases where letting information or skills languish for long pe-
riods of time won’t necessarily guarantee that they will be forgotten. Highly-developed 
motor and cognitive skills that can be done unconsciously after much practice — like 



93

riding a bicycle or speaking a foreign language — can often still be performed with 
surprising levels of competence even after years of neglect.

Applying knowledge of human memory to user 
interface design
On the basis of this understanding of memory, memorization, recall, and forgetting, 
here are some guidelines to keep in mind when designing software:

•	 Structure your interface to reduce or eliminate the need to memorize and recall 
things. Donald Norman discusses the notion of “knowledge in the world” versus 
“knowledge in the head”. For example, presenting a list of options in a menu is an ex-
ample of “knowledge in the world”: the user can view the menu, read and recognize 
the options, and make a selection without needing to memorize or recall anything. 
If you were to require the user to enter commands at a command-line interface, on 
the other hand, this would require the user to memorize and recall the commands, 
thereby requiring the user to store that knowledge “in the head”, and making subse-
quent recall potentially subject to errors and forgetting.

•	 If a task has a defined sequence of steps, guide the user through the task flow step-by-
step by presenting forms and controls in a logical, sequential order. If appropriate, 
consider offering a wizard-style interface, with multiple pages that can be traversed 
with Previous and Next buttons. Avoid forcing the user to remember a series of com-
mands or how to navigate to various seemingly unrelated places to finish the task.

•	 While shortcut keystrokes and command-line interfaces are appreciated as time-
savers by advanced users, you shouldn’t make these the sole means of interaction, as 
they require memorization and recall. If you must rely on shortcuts or commands, 
make it easy to refer to a quick-reference chart or other help material.

•	 Make icons and names easily recognizable so that they can be found easily when 
scanning a list or menu. Icons can be clarifying if the images represent things that 
are concrete and recognizable. The icons also need to be easily differentiable from 
each other. If the user has to memorize and recall what an peculiar or abstract icon 
really means, or if the user must squint and try to puzzle out the difference between 
several nearly identical icons, then it defeats the purpose of using a graphical repre-
sentation. An icon’s image and a textual label should be shown together if the image 
is abstract or its meaning is unclear.

•	 If the user will have to work with ID numbers such as product or customer numbers, 
it can be advantageous to limit these to about seven or fewer digits or characters in 
length, if possible, so that it’s easier to temporarily store the numbers in working 



94

memory.

•	 Arbitrary names are harder to remember and recall than names that accurately de-
scribe what they represent. When names don’t match what they actually represent, 
not only do they become problematic to learn, but the additional memorization and 
recall add to the user’s cognitive burden. 

Shell commands in Unix-based operating systems are particularly bad at violating 
this principle. For example, most Unix systems offer a command called “less” for 
showing the contents of a text file. The name “less” is a play on words; “less” is an en-
hanced version of another command called “more”. (“more” is a filter command that 
lets you view a file or other stream of data in a page-by-page fashion; its name stems 
from the fact that it makes the console pause until you press the space bar to show 
“more” of the file or stream contents.) The name “less” doesn’t in any way communi-
cate what that command does; it’s a banal pun by somebody trying to be clever. For 
the use case of showing the contents of a file, “list” would be one example of a more 
self-explanatory, more memorable, and equally concise name for this command.

•	 Offer a good online help system with search and index capabilities, or offer other 
forms of reference documentation, so that users can quickly look up instructions 
and information that they may have forgotten.

•	 In search and index systems, allow users to use synonyms and variations in case 
they can’t recall the exact word or phrase (or the correct spelling) needed to identify 
something.

•	 Try to use commonly accepted, well-known, standard names for things rather than 
inventing your own terminology. Avoid using abbreviations or acronyms if they are 
not immediately obvious.

•	 Be consistent; don’t make the user remember different ways of performing the same 
action in different contexts. I’m familiar with one enterprise system where some 
drop-down lists had to be opened with a Ctrl-L keystroke combination, while cer-
tain other drop-down lists had to be opened with Alt-F11. Technical limitations of 
the platform were given as the reason for that situation: fixed lists of values could be 
presented with the Ctrl-L drop-down list, where as dynamic lists of values required 
the alternative. However, I suspect a little more effort could have yielded a more 
user-friendly solution. 



95

The impact of hardware devices on 
software ergonomics
A product that is ergonomic is designed in a way that helps reduce physical discomfort, 
stress, strain, fatigue, and potential injury during operation. While ergonomics is usu-
ally associated with physical products, the design of the a software application’s interface 
also influences the way the user physically interacts with the hardware device on which 
the application runs. And ergonomics also extends to the cognitive realm, as we seek 
to design software that helps people work more productively, comfortably, and with a 
minimum of mental strain. We can do this by reducing the dependence on memoriza-
tion, for example.

To create an ergonomically sound software application, it is important to first think 
about the properties and the context of use of the hardware device on which the ap-
plication will run. For the majority of consumer and business applications, there are 
currently three main forms of general-purpose personal computing devices:

•	 Desktop and laptop computers with a screen, keyboard, and a pointing device such 
as a mouse or trackpad. These devices are comfortable for users sitting at a desk for 
a long period of time.

•	 Tablet devices with touchscreens. These devices have a form factor that is comfort-
able for sitting and consuming content (reading webpages, watching movies, etc.), 
but entering information and creating content via touch-screen control is generally 
not as comfortable and convenient as with a desktop machine.

•	 Mobile phones and similar devices such as portable music players. These devices 
are usually used for relatively short bursts of activity throughout the day and while 
on the go.

For more specialized applications, you might have a combination of software and cus-
tom-designed, special-purpose hardware. Examples include a vending machine that 
sells subway tickets, an automated teller machine, or an industrial thermostat control. 
If you are a designer for such a product, you may have responsibility for designing the 
form of the physical interface in addition to the software.

To give you an idea of some of the practical ergonomic aspects that you should keep 
in mind when designing for different devices, let’s compare desktop computers with 
touchscreen tablets:

•	 Tablet devices with multi-touch touchscreens are pleasant and fun to use from an 



96

interaction standpoint because you can interact directly with on-screen elements by 
touching them with your finger. Desktop machines generally don’t offer touchscreens 
(although at the time of publication, this is beginning to change). Touchscreens on 
desktop monitors can be uncomfortable for extended use, because reaching your 
arm out to the monitor places strain on the arm and shoulder muscles, and this 
quickly becomes physically tiring. Desktop setups thus rely on pointing devices 
such as mice and trackpads, which can be used with the hand and arm in a resting 
position on the desk. These pointing devices introduce a level of indirection, how-
ever: moving the pointing device moves a cursor on the screen. 

•	 On desktop systems, there is a pointing device cursor (mouse arrow), whereas 
touchscreen devices have no such cursor. Some mouse gestures, such as hovering 
the cursor over a control, thus have no counterpart in touchscreen systems (and 
so, for example, pop-up “tooltip” messages that appear when you hover the mouse 
cursor over a control do not exist on touchscreen systems). On both desktop and 
touchscreen systems, however, a text cursor, called a caret, appears when a text field 
receives the focus.

•	 While a mouse may have multiple buttons, and clicks can be combined with holding 
down modifier keys (Control, Alt, Shift, Command, etc.), touchscreens don’t offer 
as many activational options. When you drag your finger across the screen, is it to 
be interpreted as a scrolling gesture, or an attempt to drag and drop an object on 
the screen? Cut-and-paste and right-clicking to get a context menu are easy on a 
desktop machine, but on a tablet, such operations require double-touch or touch-
and-hold gestures that are not always immediately evident.

•	 Fingers range in size substantially; young children have small, narrow fingertips, 
whereas some men have very thick, fat fingers. Touchscreen buttons and icons thus 
must be large enough to accommodate “blunt” presses without triggering other 
nearby controls. In contrast, the mouse arrow allows pixel-precise pointing, and 
so buttons and icons can be substantially smaller on desktop applications than on 
touchscreen devices.

•	 When the user is touching something on the screen, the user’s finger and hand will 
obscure part of the screen, so you have to be careful about what you display and 
where, so that important information is not hidden. When pressing an on-screen 
button, the user’s fingertip will obscure the button being pressed. Because button 
presses don’t always “register”, users seek visual feedback to see that the button press 
worked, and so you either need to make the buttons large enough so that the ani-
mation of the button being depressed is visible, or you should give some other clue 
when the user retracts the finger to show that the button was pressed (maybe press-
ing a Next button makes the application navigate to the next screen, which is very 
clear feedback that the button press was successful).



97

Auditory feedback, like a clicking sound, can also be useful as a cue that the button 
was pressed successfully. Some mobile and tablet devices can also vibrate slightly, to 
provide tactile feedback when a button is pressed.

•	 Mobile devices and tablet devices are often held by the user in one hand while stand-
ing, and so the user has only the other hand free to operate the touchscreen.

When designing a product, understanding the constraints and limitations, as well as 
the opportunities, of the hardware devices the software will run on will help you design 
appropriate and comfortable interactions.

Cognitive load and mental effort
Users interact with a software application by means of physical actions. These actions 
can include pressing keys and key combinations, typing for a sustained amount of time, 
precisely aiming a pointing device (homing the mouse pointer onto a target), and click-
ing the mouse or gesturing on the screen.

Performing each such action incurs a cost of time, physical effort, and some mental 
effort. In other words, performing an action requires the user to expend some energy.

In addition to the above physical actions, there are other actions that cost time, physical 
and mental effort, and energy, such as:

•	 Reading labels, titles, and instructions

•	 Choosing an option from a list or menu

•	 Scrolling

•	 Navigating

•	 Seeking (trying to locate something specific)

•	 Switching contexts (for example, switching between two windows, pages, or tabs)

•	 Switching visual attention (for example, reading text, then referring to an illustra-
tion, and then returning to the text)

•	 Recalling from memory a specific piece of information, such as a command name 
or an ID number

•	 Recalling from memory how to carry out a task sequence



98

•	 Waiting for a response from the system

•	 Recovering from some kind of distraction (like an unexpected pop-up dialog that is 
not directly relevant to the task at hand)

In general, users don’t mind performing actions when the actions clearly help to make 
progress towards achieving a desirable goal, and when there seems to be some underly-
ing rationale for why the actions are necessary.

However, being forced to undertake actions that are perceived as unnecessary quickly 
produces feelings of annoyance; the application is forcing the user to waste time and 
energy. With enough repeated annoyances, it is only natural that resentment will form 
towards the product (and its designers, who evidently have little respect for the user).

Therefore, we should obviously aim to design applications in such a way that any un-
necessary actions, thinking, or waiting are eliminated.

But consider this situation: If we can take a design that requires ten mouse clicks to 
accomplish a task, and revise it so that it only requires seven mouse clicks, then we’d 
probably say that the revised design is superior, because three evidently superfluous 
mouse clicks were eliminated. But what if the first design didn’t require much conscious 
thought; the user might have had to repetitively click Next ten times in a row in a wizard 
where all the default settings were acceptable. And perhaps the second design required a 
lot of thought as to how to set up various options in a very large, complex control panel. 
In this case, it sounds like the first design is the easier one to use, even though it involves 
a few more clicks.

So while we should generally aim to reduce the average number of physical and low-lev-
el actions a user must perform, we should really take a broader view. We must consider 
the cognitive load imposed by the task and the user interface.

Cognitive load refers how mentally taxing it is to do a task. It is essentially a way of 
referring to how much sustained attention and brainpower is required to do something. 

The more complex a task is — that is, the larger the number of contextual details of the 
task that the user has to keep in working memory, and the more the task demands a high 
level of focused attention — the higher the cognitive load is for that task.

And so a good general design strategy is to reduce the user’s cognitive load as much as 
possible. The title of Steve Krug’s popular usability book, Don’t make me think! (Krug, 
2000), is a useful slogan to remember — reducing the amount of thinking the user has 
to do is arguably the single most important goal to consider when designing usable 



99

software products.

Thinking might just be the hardest kind of work there is. At least, it is the most avoided. 
For instance, most users of spreadsheets and word processors use a lot of repetitive 
manual keystrokes for, say, formatting content. While these users may suspect that there 
must be a more efficient way of doing the reformatting, they continue to use their trust-
ed but labor-intensive methods, because thinking through the problem, investigating 
alternatives, and learning how to configure and use features like styles, macros, or script-
ing would involve more intense mental effort than just plowing through using manual 
techniques that require less thinking. While an alternative method would probably save 
time over the long run, most users doesn’t want to spend the time and effort in the short 
term to figure out that alternative.

Types of thinking
Let’s consider some of the different kinds of thinking that users of software might have to 
engage in. If your application requires some of the following kinds of thinking, it might 
be worth investigating whether you can restructure the design to reduce to some degree 
the need to engage in them:

•	 Determining what the next step in a procedure should be

•	 Holding things in working memory for the duration of the task

•	 Having to recall facts, commands, or procedures from long-term memory

•	 Having to memorize things in long-term memory

•	 Having to look up information from a reference source

•	 Making decisions or judgements

•	 Mentally integrating information from multiple sources

For many intellectual tasks, a lot of thinking goes on in the user’s head, and the software 
only incidentally serves as a way to facilitate the activity and record the results of the 
thinking. For example:

•	 Creative output: coming up with ideas and generating the content of writing, audio, 
or visual art projects

•	 Problem-solving



100

•	 Reading and understanding long passages of text

•	 Actively conducting research with the goal of discovering, synthesizing, or creating 
new knowledge

For these higher-level activities, there’s often little you can do to reduce the amount of 
thinking required, because the thinking involved has very little to do with the hands-on 
operation of the software. The best you can do is ensure that the software works reliably, 
generates good-quality output, and supports the task as best as possible.

So if your application provides access to academic journal articles, the search function 
should provide relevant results, which will reduce the amount of time the user spends 
searching, navigating, and reading. Likewise, if your application is a word processor and 
your user is writing a novel, there’s little you can do to relieve the user of the very tricky 
mental work involved in creative writing, including developing a plotline, creating and 
fleshing out characters, and crafting the narrative and dialogue. But your application can 
aid the user in secondary ways, perhaps by offering support for organizing notes and 
materials, or by providing smarter tools and workflows for editing and proofreading.

Reducing the amount of all types of work and effort — both thinking and physical ac-
tions — will result in a product that is easier and more enjoyable to use.

Quantifying cognitive load and task efficiency
If we wanted to attempt to quantify the cognitive load — i.e., the thinking and effort in-
volved — for performing a particular task, we could write out a list of the actions or op-
erations that a user would have to do to carry out that task under normal circumstances. 
We could then estimate or assign a score, representing our idea of the effort involved, 
to each individual action, and then sum up all of the scores to get a total effort score for 
the task. We could then evaluate different design alternatives by comparing their scores.

The KLM-GOMS model, the Keystroke-Level Model for the Goals, Operators, Methods, 
and Selection Rules analysis approach (Card et al., 1983), is one analysis technique based 
on this idea, but instead of assigning scores representing effort, an estimate of the time 
required to do each action is estimated instead. The amount of time it takes to complete 
a task is a good proxy for physical effort, although it does not accurately measure the 
intensity of mental effort.

Let’s take a very condensed tour of the KLM-GOMS approach.

To accomplish a goal, the user will break the work into tasks, and for each task unit, the 



101

user will take a moment to construct a mental representation and choose a strategy or 
method for carrying out the task. This preparation time is called the task acquisition 
time, and can be very short — perhaps 1 to 3 seconds — for routine tasks, or much lon-
ger, perhaps even extending into several minutes, for creative design and composition 
tasks.

After the task acquisition, the user carries out the task by means of a sequence of actions 
or operations. The total time taken to carry out the actions is called the task execution 
time. Thus the total time required to complete a task is the sum of the task acquisition 
and task execution times.

To estimate the task execution time, KLM-GOMS defines basic operations (we assume 
here that we are dealing with a keyboard-and-mouse system):

Operation Description Suggested average values
K Keystroking Pressing a key or mouse 

button, including the Shift 
key and other modifier keys

Best typist: 0.08 s
Good typist: 0.12 s
Average typist: 0.20 s
Worst typist: 1.20 s

P Pointing Moving the mouse pointer 
to a target on the screen

1.10 s

H Homing Moving a hand from the key-
board to the mouse or vice-versa

0.40 s

M Mental 
operation

Mental preparation or thinking 1.35 s

R System 
response 
operation

Time taken for the system to re-
spond

varies

Figure 9-1

So to use the mouse to click on a button, we would have a sequence of operations en-
coded as “HPK”: homing, to move the hand to the mouse; pointing, to move the mouse 
to target the mouse cursor over the button; and a keystroke, representing the pressing of 
the mouse button.

In addition to these operators, the KLM-GOMS model also includes a set of heuristic 
rules governing how the “M” operation, the mental operation, is to be inserted into an 
encoded sequence. For instance, “M” operations should be placed before any “K” and 



102

“P” operations, except for various special cases. So the “HPK” sequence discussed above 
would become “HMPK”. The suggested heuristic rules are quite complex and arcane, so 
please refer to the original article by Card et al. if you need to know all of the details. In 
actual practice, it will usually suffice if you simply insert “M” operations in places where 
you feel there is some thinking or decision-making effort involved.

As an example, let’s consider the task of finding instances of a search term in a document 
in a text editor. One possible sequence of actions to accomplish this might be:

•	 Click on the “Search” menu

•	 Click on the “Find Text” item in the menu

•	 Enter “kittens” as the search term in dialog

•	 Click on the “OK” button

This can be encoded using KLM-GOMS and used to formulate an estimate of the aver-
age time required as follows:

Action/Operation Encoding Time (s)
Task acquisition - 1.5
Click on the “Search” menu H[mouse] 0.40

MP[“Search” menu] 1.35 + 1.10
K[“Search” menu] 0.20

Click on the “Find Text” item MP[“Find Text” item] 1.35 + 1.10
K[“Find Text” item] 0.20
H[keyboard] 0.40

Enter “puppy” as the search term 7K[k i t t e n s] 7(0.20)
Click on the “OK” button H[mouse] 0.40

MP[OK button] 1.35 + 1.10
K[OK button] 0.20

Total 12.05 s

Figure 9-2

Of course, we would expect a more skilled user to be able to accomplish the same task 
in substantially less time by using shortcut keystrokes rather than the mouse. You could 
do a separate analysis of each possible task sequence to compare the relative efficiency 
of each alternative.



103

There are obviously limitations to this kind of analysis; it provides a general rough es-
timate only, and it assumes that users know the right sequences of actions to complete 
a task. It also does not account for errors and mistakes. But when you are designing 
an interface and considering how to design an interaction, methods such as the KLM-
GOMS model give you a way to compare the efficiency of different alternatives, and all 
other things being equal, the alternative that can be done in the least amount of time is 
the most convenient to the user, and often involves the least cognitive load.

Recreational and creative uses of software
Our discussion of cognitive load might make it sound like operating software is an ar-
duous ordeal, and while this might be true for some enterprise systems, it’s not the case 
for all software. Games require interaction with an interface, but this is not perceived 
as being work. Having to click 100 times to delete 100 spam comments on a blog would 
be considered intolerably poor design. Yet people will happily click hundreds of times 
when playing a game such as Mah Jongg. There are also games like flight simulators 
where players gain enjoyment from doing what others, such as aircraft pilots, do in their 
everyday jobs.

As well, when people get deeply involved in producing a creative work, whether writing 
a novel or drawing art, what might appear to be work to others may not be perceived as 
work by the artist. And so work that is voluntary and creative is simply more pleasur-
able than work that is involuntary and mundane. Motivating factors, like competition in 
games, can also change the way work is perceived.

Design techniques for reducing cognitive load
We’ve argued minimizing cognitive load is essential for making software more pleasant 
to use. Here are some tips and techniques to employ for reducing the cognitive load 
imposed by your software product:

•	 Use consistent naming, labelling, icons, and visual presentation to reduce any 
confusion.

•	 Avoid redundancy so that the same information doesn’t need to be read and pro-
cessed repeatedly.

•	 Put related things close together, and avoid forcing the user to switch between dif-
ferent tabs or windows or to scroll back and forth to find or enter information.

•	 Avoid distractions like pop-up dialogs that break the user’s concentration and flow.



104

•	 Identify and eliminate any unnecessary steps. You might allow expert users to hide 
instructions and turn off warning messages.

•	 If your application has multiple tasks or screens that share similarities, be consistent 
in designing the visual appearance and workflow of these tasks and screens, so that 
once the user has learned how to use one, the same patterns can be applied to the 
others.

•	 Automate as much manual work as is reasonably possible. In some cases, though, 
you may want to allow experts to have the option of doing things manually if they 
need an extra level of control or precision.

•	 Where there is a list of steps to be followed, always make it clear how to do the next 
step. When possible, guide users through tasks with wizard-style interfaces rather 
than force users to memorize a complex procedure.

•	 Use visual cues and clues to avoid the need for memorization and recall. Allow op-
tions to be selected from menus instead of requiring users to memorize commands.

•	 Reduce delays and latency as much as possible. Give feedback quickly. If an op-
eration will take a long time, use a progress bar or other indicator to show that the 
system is busy, and when possible, give an estimate of how much time the remainder 
of the processing will require.

•	 In productivity applications, opening the application with a blank document can 
be confusing for new users, as they may not know where to begin. When possible, 
offer to take the user to a tutorial in the online help system, or provide templates 
or sample documents so that users can modify an existing document and learn by 
following a pattern.

•	 Avoid forcing the user to memorize data in the short term. For example, in one en-
terprise system (the same one as mentioned previously, with the inconsistent drop-
down lists), in order to accomplish virtually any use case, the user was required 
to visit a series of screens, and the same nine-digit customer number had to be 
re-entered in each window. This was absurd when the system could easily remem-
ber the context of which customer is being operated on and fill in this information 
automatically.

Flow states, focus, concentration, and productivity
Many kinds of software, including productivity applications and enterprise information 
systems, are intended to be used for sustained periods of time. Such applications should 
encourage the user to focus and work productively. Similarly, entertainment products 



105

aim to immerse the user in an enjoyable experience.

Psychologist Mihaly Csikszentmihalyi described and popularized the concept of flow, 
which is the mental state of being completely focused on an activity. For a user who is 
in a flow state:

•	 Performance of the activity occurs naturally and unconsciously. Creativity and pro-
ductivity are high.

•	 The user experiences deep concentration and immersion in the activity. The user is 
simultaneously alert and relatively relaxed.

•	 The user often becomes so engrossed in the activity that he or she is unaware of the 
passage of time (often described as “living in the moment”).

•	 The difficulty of the activity is a good match for the user’s skill; there is sufficient 
challenge to keep the user’s interest, but not so much that the task seems impossible, 
and the activity is not so mundane that it causes boredom.

•	 The user is confident and has a sense of control over the situation.

•	 Usually, the user is working towards achieving a specific goal. (For some applica-
tions, the goal may not always be particularly productive; for games, the goal may 
be simply to finish one more level.)

Here are some things you should know about flow states with regard to software:

•	 Beginning users generally cannot be expected to be able to enter a flow state; it re-
quires some level of comfort and competence with operating the application.

•	 It is often difficult to get into a flow state, and simply wishing to concentrate does 
not make it happen. Typically, it takes 15 minutes or more of struggling and working 
unproductively before one can “get into the groove”.

•	 Interruptions such as phone calls and incoming e-mail notifications, and distrac-
tions such as chattering coworkers or a television in the same room, can pull a user 
out of a flow state. When returning to the activity after a distraction, it usually takes 
another period of time to get back into a flow state.

There is little you can do as a designer to explicitly help a user enter a flow state, but 
you can encourage and sustain concentration and flow by making the experience work 
smoothly and by minimizing or eliminating any repeated frustrations that might hinder 
the user from concentrating. Here are some design suggestions for doing that:



106

•	 Try to eliminate interruptions like modal pop-up dialogs that present notification 
and warning messages. Offer expert users the option of turning off any repetitive 
warnings.

•	 Keep the visual presentation simple. Brightly-colored images, and especially any-
thing animated or blinking, can distract the user from reading text or concentrating 
on a work activity.

•	 When helping guide the user through task flows, make it obvious what the next step 
is, so that the user doesn’t have to start exploring the interface, which easily leads to 
distraction.

•	 Avoid making the user switch repeatedly between different pages, screens, or tabs 
to find related information; each context switch can be disorienting and can cause 
users to forget what they were just doing.

•	 Make it easy for users to save any work in progress and then later pick up where they 
last left off.

•	 Show completion progress for lengthy tasks. When possible, reward the user for 
completing tasks; even a simple chime sound effect when some lengthy process is 
completed can be satisfying.

•	 Ensure that the system gives feedback promptly; especially in web-based systems, 
strive to reduce latency. Having to wait several seconds for confirmation that a but-
ton was pressed can become very annoying very quickly and can break the flow of 
work.

•	 It can be hard for humans to concentrate on multiple things at one, so when pos-
sible, don’t make users manage multiple tasks at the same time. On the other hand, 
when the system is busy with a long-running process, you might give the user the 
option to have the process run in the background so that he or she can work on 
something else in the meantime. When users have to wait for an unknown length 
of time, they will frequently switch to something else while waiting (like checking 
e-mail or surfing the web).

If you are designing a typical software application, preventing distractions in the user’s 
environment is out of your control. However, in some cases, you and your team may 
have the opportunity to influence the design of users’ physical workspaces. For example, 
for an air traffic control operations center, in addition to designing the software itself, 
you may be able to influence the layout and design of the workstations and the office 
facility to prevent distractions.



107

Motivation, rewards, and gamification
Can software products be designed to motivate users and increase productivity?

If you’re running an organization and your staff gets their work done using an enterprise 
application, you want to increase their productivity. Or, if you’re running a community-
driven website that relies on user-generated content, you want to encourage participa-
tion and repeat visits. Especially in a business setting, some of the tasks that have to be 
done are often tedious or unpleasant.

But there’s one class of applications that tends to have little difficulty keeping users in-
tensely focused and always coming back for more: Games. Some people think that some 
of the things that make gameplay addictive can also be applied to other kinds of applica-
tions. This is called gamification, and it’s currently a hot fad.

What makes games addictive?

•	 First, there’s the voluntary nature of game-playing. People are more likely to enjoy 
something when they’re choosing to do it, rather than being required to do it.

•	 Second, games have goals and rewards: You want to get to the next level, and it’s sat-
isfying when you finally achieve it. Some games have elaborate systems of rankings, 
and as your skill improves, you get promoted; other games revolve around hunting 
for various desirable “items”. And winning the game is ultimately the most satisfying 
reward.

•	 Third, as players achieve these goals and rewards, there is a sense of progression and 
an awareness that the player’s skill is improving.

•	 Fourth, most online games are multiplayer games, and so there is an element of 
competition. Many people are driven to win and want to be the best. There is pride 
and social recognition in being at the top of the “high scores” leaderboard.

•	 Finally, multiplayer games can be a social experience, whether you’re competing 
head-to-head with other players, or forming cooperative teams. For some people, 
games are a casual way to spend time and share social experiences with friends and 
family.

If these ideas make games fun and addictive, then can some of those ideas be brought 
to other products like enterprise applications and websites, and will this make those 
products more fun and addictive? It depends on the product and its users, but often the 



108

answer is yes — as long as it’s not done in an overly gimmicky way.

Stack Overflow, a programming question-and-answer community website, is enormous-
ly popular. Much of that popularity today is due to the vast amount of content that often 
shows up at the top of the search results for programming-related queries. But how did 
they get all that content? It was created by the users, and a clever incentive system had a 
lot to do with it. Users accumulate points for successfully answering questions and earn 
“badges” as recognition of achieving certain milestones. Some badges unlock special 
privileges, like the ability to moderate discussions. And users with lots of points and 
badges enjoy respect and status for their contributions to the community.

Rewards systems can be effective for work that is easily measured. But you can breed re-
sentment if the rewards system is not seen as reliable or fair. Creative work is particularly 
difficult to reward because objective metrics for measuring quality and even productiv-
ity are often impossible to define. For example, how would you create an algorithm to 
judge the quality of a graphic artist’s logos? Or if one programmer took two hours and 
wrote 100 lines of code to solve a problem, and another took one hour but needed 200 
lines, who is more productive?

One proxy for quality is popularity; on a community-driven website, you can let users 
“upvote” or give points to other contributors to reward them for good contributions. 
When the community is large and active, this system can be quite effective. This sort of 
peer voting is more problematic in a workplace setting, though. Asking employees in 
small teams to judge each others’ work and hand out rewards rarely results in objective 
evaluations and can exacerbate office politics.

Reward systems are always well-intentioned, and yet they often lead to unexpected and 
unintended consequences. In a business environment, management will inevitably use 
these systems as a metric for judging and comparing workers’ performance, even if that 
was not the original intention, and this can be problematic if the rewards system is not 
an accurate measurement of actual job performance. And metrics-based incentives 
encourage workers to game the system, to the detriment of the organization and its 
customers. I’m aware of a technical support call center that measured the time spent 
per call and disciplined workers whose average time per call exceeded a certain target. 
While the scheme was intended to reduce costs, it only had the effect of forcing workers 
to do anything possible to reduce call durations. So rather than try to actually resolve 
callers’ issues, workers would unnecessarily forward calls to someone else or even give 
faulty but short answers so that they could hang up as soon as possible. This only led to 
an increased volume of calls from angry customers!

Competition can be a powerful motivator for some people; sales teams have used com-
petition (such as salespeoples’ results and rankings being posted in the hallway) as a 



109

motivator for years. But competition can be a turn-off for many others. If you structure 
the system so that there is only one winner, then you’ll have one happy winner and the 
rest of your users will be unhappy losers. And on community websites, competition can 
discourage newcomers: How can a new user possibly compete against the obsessive-
compulsive contributors who have been participating for years and have 50,000 points?

So if you’re considering applying some of the ideas of gamification to your product, be 
sure that you understand your users, and be sure to think through all of the consequences.

Gamification can be very appealing to some audiences, and gimmicky to others. 
Established professionals, for instance, tend to be highly self-disciplined, take a lot of 
pride in their skills and accomplishments, and gain intrinsic satisfaction out of doing 
their job well. These people will be personally insulted by the notion that their work can 
be turned into a “game” with phony competition and incentives.

For professional users, the simple indication of progress on long tasks is probably the 
best reward. There is satisfaction in finishing a task, and for longer tasks, it’s reassuring 
to know that you’re making progress towards completion. So in a data-entry-centric ap-
plication such as income tax software, it can make sense to break down data-entry forms 
into sections or pages that be checked off when complete. A graphical progress meter 
showing the percentage of work completed and work remaining can also be very useful. 
Figure 9-3 shows an example of a progress indicator on LinkedIn’s profile editing page:

 

Figure 9-3

Because there is satisfaction derived from completing tasks, it is a good idea to break 
lengthy work sessions into smaller task units whenever possible. For example, read-
ing a 500-page book with 50 small chapters tends to be more satisfying than reading 
a 500-page book with only 5 big chapters, because there’s a feeling of completion and 
accomplishment when you reach the end of a chapter.


	DesigningUsableApps_BookCover_1.0_2013-09-22_1546
	DesigningUsableApps_BookBody_1.0_2013-09-22_1530



